Abstract

Klotho is a transmembrane protein expressed in the renal tubules where it acts as a permissive coreceptor for fibroblast growth factor 23 (FGF23). FGF23 signaling reduces the abundance of CYP27b1 and phosphate cotransporters NPT2a and NPT2c, leading to a decrease in1,25(OH)2D3 synthesis and a rise in urinary phosphate excretion, respectively. Systemic or whole-nephron deletion of Klotho in mice results in renal FGF23 resistance characterized by high 1,25(OH)2D3 and phosphate levels and premature aging. Expression of Klotho is highest in the distal tubules, whereas 25OH vitamin D 1α hydroxylation and phosphate reabsorption predominantly occur in the proximal tubules. Currently, the segment-specific roles of Klotho in renal tubules are not fully understood. Here we have generated mice with Klotho specifically ablated from the proximal tubules using 3 different Cre mouse strains. All 3 models displayed impaired urinary phosphate excretion and increased abundance of NPT2a in the brush border membrane. Notably, hyperphosphatemia in knockout mice was mild or nonexistent under basal conditions but occurred upon high phosphate loading, indicating the presence of compensatory mechanisms. Effects on 1,25(OH)2D3 varied between mouse strains butwere modest overall. Thus, Klotho expressed in the proximal tubules has a defined but limited role in renal phosphate handling invivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call