Abstract
These studies were designed to evaluate the correlation between morphologic and functional changes after heterotopic auxiliary small bowel isograft with systemic venous drainage and two ostomies in 20 Lewis rats. Morphologic damage of the graft was scored by full-thickness biopsies before surgery and 1, 3, 5, and 7 days after transplant. Functional evaluation of the graft was done, at the same time points, by urinary excretion of lactulose and mannitol injected in the proximal ostomy. The intestinal permeability was also studied by injecting Escherichia coli labeled with indium-111 oxine in the proximal ostomy. Translocation of radiolabeled bacteria was quantitated in extraintestinal tissues by radionuclide counts and number of viable organisms and in vivo by scintigraphic imaging. One day after transplant, significant graft damage (score 17.2 +/- 4.2) was observed when compared with the pretransplant value (7.3 +/- 2.6). The degree of tissue injury was similar on days 3 (15.8 +/- 3.5) and 5 (16.1 +/- 3.9) after transplant and remained high on day 7 (11.8 +/- 2.8). The lactulose to mannitol ratio showed a significantly increased permeability on day 1 (17.5) versus pretransplant values (2.6), remained high on day 3 (8.6), and returned to normal values on day 5 (2.8). Translocation of bacteria to distant organs, as measured by both radionuclide counts and number of viable organisms, was strikingly enhanced on day 1 after transplantation, compared with control animals, but returned to the pretransplant value on day 3. A good qualitative and quantitative correlation was observed between radionuclide counts in the extraintestinal organs and in vivo images obtained by scintigraphic scanning. In conclusion, in this model, timing and degree of bacterial translocation do not seem to correlate well, with the exception of the acute post-transplantation phase, with morphologic and permeability changes of the graft. Evaluation of translocation by scintigraphic imaging appears a suitable approach to study in vivo the kinetics and distribution of this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.