Abstract
We had investigated the biocompatibility, osteoconductivity, and biodegradability of a porous composite of hydroxyapatite (HA) and poly-DL-lactide (PDLLA) implanted into rabbit femoral condyles. It showed excellent osteoconductivity and biodegradability as a bone substitute. Newly formed bones were remodeled, and materials were resorbed almost completely at 78weeks after implantation. In consideration of its biocompatibility and degradability, we investigated its potential for use as a cellular scaffold and evaluated its osteoinductive property. On implantation to the rat dorsal subcutaneous tissue loaded with syngeneic bone marrow cells, osteogenesis with enchondral ossification was seen both on and in the material at 3 weeks after implantation. This osteogenesis in the HA/PDLLA tended to get mature and newly formed bone tissues were found in the material by 6weeks. To investigate the osteoinductive property material itself has, we attempted to implant this porous composite material to extra-osseous canine dorsal muscle. At 2months, osteogenesis was seen in the pores of the material. It indicated the material induced osteogenesis with intramembranous ossification process. Therefore, HA/PDLLA might be a desirable material for bone substitutes and cellar scaffolds with osteoconductive and osteoinductive property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.