Abstract
Silk–elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure–function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.