Abstract

The CRISPR/Cas9 system has shown great potential for treating human genetic diseases through gene therapy. However, there are concerns about the safety of this system, specifically related to the use of guide-free Cas9. Previous studies have shown that guide-free Cas9 can induce genomic instability in vitro. However, the in vivo safety risks associated with guide-free Cas9 have not been evaluated, which is necessary for the development of gene therapy in clinical settings. In this study, we used doxycycline-inducible Cas9-expressing pigs to evaluate the safety risks of guide-free Cas9 in vivo. Our findings demonstrated that expression of guide-free Cas9 could induce genomic damages and transcriptome changes in vivo. The severity of the genomic damages and transcriptome changes were correlate with the expression levels of Cas9 protein. Moreover, prolonged expression of Cas9 in pigs led to abnormal phenotypes, including a significant decrease in body weight, which may be attributable to genomic damage-induced nutritional absorption and metabolic dysfunction. Furthermore, we observed an increase in whole-genome and tumor driver gene mutations in pigs with long-term Cas9 expression, raising the risk of tumor occurrence. Our in vivo evaluation of guide-free Cas9 in pigs highlights the necessity of considering and monitoring the detrimental effects of Cas9 alone as genome editing via the CRISPR/Cas9 system is implemented in clinical gene therapy. This research emphasizes the importance of further study and implementation of safety measures to ensure the successful and safe application of the CRISPR/Cas9 system in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.