Abstract

Nitric oxide (NO), a simple diatomic free radical, is known to play a critical physiological role in diverse organisms. An iron complex, with N-(dithiocarboxy)sarcosine (Fe-DTCS), has a high affinity for endogenous NO and can trap, stabilize, and accumulate it. The stable NO adduct thus formed is detectable at room temperature with electron paramagnetic resonance (EPR) spectrometry. We report in vivo EPR imaging of endogenous NO, trapped by an Fe-DTCS complex, in the abdomen of a live mouse. To our knowledge, this is the first report on EPR imaging of endogenous free radicals produced in vivo. This EPR imaging method will be useful for the noninvasive investigation of the spatial distribution of NO in pathologic organs or tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.