Abstract

DNA vaccines have been extensively studied as preventative and therapeutic interventions for various infectious diseases such as tuberculosis, HIV/AIDS and influenza. Despite promising progresses made, improving the immunogenicity of DNA vaccine remains a technical challenge for clinical development. In this study, we investigated a tuberculosis DNA vaccine BERopt, which contained a codon-optimized fusion immunogen Ag85B-ESAT-6-Rv2660c for enhanced mammalian cell expression and immunogenicity. BERopt immunization through in vivo electroporation in BALB/c mice induced surprisingly high frequencies of Ag85B tetramer+ CD8+ T cells in peripheral blood and IFN-γ-secreting CD8+ T cells in splenocytes. Meanwhile, the BERopt vaccine-induced long-lasting T cell immunity protected BALB/c mice from high dose viral challenge using a modified vaccinia virus Tiantan strain expressing mature Ag85B protein (MVTT-m85B) and the virulent M. tb H37Rv aerosol challenge. Since the BERopt DNA vaccine does not induce anti-vector immunity, the strong immunogenicity and protective efficacy of this novel DNA vaccine warrant its future development for M. tb prevention and immunotherapy to alleviate the global TB burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call