Abstract
The in vivo effects of four H1-antagonists, diphenhydramine, chlorpheniramine, mepyramine, and promethazine, on the metabolism of noradrenaline (NA), dopamine (DA), and 5-hydroxytryptamine (5-HT) were investigated in the whole mouse brain. Diphenhydramine and chlorpheniramine had no significant effect on levels of NA, 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), DA, and 5-HT, but they significantly decreased levels of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). In particular chlorpheniramine markedly decreased 5-HIAA levels at doses as low as 1 mg/kg, i.p. Mepyramine significantly decreased 5-HIAA levels but not those of other substances. High doses of promethazine significantly decreased NA levels but markedly increased those of MHPG, DOPAC, HVA, 5-HT, and 5-HIAA. The DA reduction induced by alpha-methyl-p-tyrosine (alpha-MT) was significantly inhibited by diphenhydramine, chlorpheniramine, and promethazine, but the alpha-MT-induced NA decrease was significantly enhanced by promethazine. The 5-HIAA accumulations induced by probenecid were significantly inhibited by chlorpheniramine and mepyramine. These results suggest: (1) Diphenhydramine and chlorpheniramine inhibit the turnover of both DA and 5-HT by blocking their neuronal uptake. (2) Promethazine and mepyramine inhibit DA and 5-HT turnover, respectively, as a result of the inhibition of the uptake mechanism. (3) Promethazine increases NA turnover by enhancing NA release. The discriminative effects of these drugs on the monoamine systems may be related to some differences in their CNS actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.