Abstract

In this study, the in vivo effects of insulin and chronic treatment with bis(maltolato)oxovanadium (IV) (BMOV) on protein kinase B (PKB) activity were examined in the liver and skeletal muscle from two animal models of diabetes, the STZ-diabetic Wistar rat and the fatty Zucker rat. Animals were treated with BMOV in the drinking water (0.75-1 mg/ml) for 3 (or 8) weeks and sacrificed with or without insulin injection. Insulin (5 U/kg, i.v.) increased PKBalpha activity more than 10-fold and PKBbeta activity more than 3-fold in both animal models. Despite the development of insulin resistance, insulin-induced activation of PKBalpha was not impaired in the STZ-diabetic rats up to 9 weeks of diabetes, excluding a role for PKBalpha in the development of insulin resistance in type 1 diabetes. Insulin-induced PKBalpha activity was markedly reduced in the skeletal muscle of fatty Zucker rats as compared to lean littermates (fatty: 7-fold vs. lean: 14-fold). In contrast, a significant increase in insulin-stimulated PKBalpha activity was observed in the liver of fatty Zucker rats (fatty: 15.7-fold vs. lean: 7.6-fold). Chronic treatment with BMOV normalized plasma glucose levels in STZ-diabetic rats and decreased plasma insulin levels in fatty Zucker rats but did not have any effect on basal or insulin-induced PKBalpha and PKBbeta activities. In conclusion (i) in STZ-diabetic rats PKB activity was normal up to 9 weeks of diabetes; (ii) in fatty Zucker rats insulin-induced activation of PKBalpha (but not PKBbeta) was markedly altered in both tissues; (iii) changes in PKBalpha activity were tissue specific; (iv) the glucoregulatory effects of BMOV were independent of PKB activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.