Abstract

Endometriosis is one of the most common chronic gynecological diseases. The aim of the study was to examine the effects of curcumin and/or deferoxamine on cell proliferation in a rat model of endometriosis. Thirty female 12-week-old albino Wistar rats, weighing 200-250 g, were used in this study. All the rats underwent ovariectomy and 0.1-mg β-estradiol 17-valerate pellets were placed intraperitoneally. An experimental model of endometriosis was created in all the animals. To create the experimental model, an approximately 1-cm long section of the uterus was taken, primarily from the right horn of the uterus. Autologous fragments were then placed between the peritoneum and muscle. The animals were divided into 3 groups: Group A, treated only with the vehicle used for curcumin and deferoxamine; group B, treated with curcumin (100 mg/kg body weight); and group C, treated with deferoxamine + curcumin (100 mg/kg body weight). After biopsy samples were obtained, the sections were stained with hematoxylin and eosin. Immunostaining for cytokeratin-7 and proliferating cell nuclear antigen (PCNA) was performed. Blood iron levels were measured using a Perkin Elmer AAnalyst 800 Atomic Absorption Spectrophotometer. The endometrial implant size increased in Group A, but treatment with curcumin (p = 0.01) and deferoxamine + curcumin (p = 0.007) reduced the implant size. In ectopic endometrial epithelial cells, there were significant decreases in PCNA immunoreactivity between groups A and B (p = 0.044) and between groups A and C (p = 0.033). Treatment with curcumin alone and/or in combination with deferoxamine contributed to a reduction in implant size and cell proliferation in a rat endometriosis model. Iron-chelating agents may act in the same manner when used in women with endometriosis; however, further studies from different perspectives are still needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.