Abstract

Xenorhabdus nematophila is a Gram-negative bacterium symbiont of the entomopathogen nematode Steinernema carpocapsae whose immunosuppressive properties over host’s immune response have been thoroughly investigated. In particular, live X. nematophila actively impairs phagocytosis in host’s hemocytes through the secretion of inhibitors of eicosanoids synthesis. In this article we have investigated the cell surface structural features of X. nematophila responsible for the elusion from phagocytosis. To this end we have studied the uptake of heat-killed (hk), fluorescein isothiocyanate (FITC)-labeled X. nematophila by phagocytes from both a host insect and a mammalian species. In vitro dead X. nematophila passively resists engulfment by insect hemocytes without impairing the phagocytosis machinery whereas, unexpectedly, in vivo a significant phagocytosis of dead X. nematophila was observed. X. nematophila in vivo phagocytosis was increased by the co-injection of the specific inhibitor of pro-phenoloxidase (PO) system phenylthiourea (PTU), even if these effects were not observed in in vitro tests. Furthermore, biochemical modifications of X. nematophila cell wall implement in vivo phagocytosis, suggesting that this bacterium avoid phagocytosis because the ligand of phagocytic receptors is somehow buried or disguised in the cell wall. Finally, dead X. nematophila escapes engulfment even by human phagocytes suggesting that X. nematophila could be a useful model to investigate escape from phagocytosis by mammalian macrophages.

Highlights

  • We investigated if dead X. nematophila bacterial particles escapes internalization by phagocytes

  • A high proportion of hemocytes internalize E. coli-fluorescein isothiocyanate (FITC) (Figure 1A1) and several of these cells display a dotted circular pattern of fluorescent bacterial particles accounting for multiple events of phagocytosis

  • As a first attempt to change the host physiology, we investigated if the phagocytosis rate of dead X. nematophila may be increased by a previous challenge with dead bacteria

Read more

Summary

Introduction

Insect innate immune responses may be broadly categorized into humoral and cellular effector mechanisms [1,2]. Humoral immunity involves synthesis of various antibacterial proteins, enzymes such as lysozyme and activation of the pro-phenoloxidase (pro-PO). Cellular immunity involves direct contact between circulating hemocytes and the invaders, examples of cellular immunity are phagocytosis and nodulation. Phagocytosis, the internalization and killing of microbes, is the basic cellular defense mechanism against bacteria and fungi [3,4]. “professional” phagocytes; granular cells and plasmatocytes are the lepidopteran phagocytes [2,4,5]. Nodulation develops as the result of the micro aggregation of hemocytes leading to the entrapment of microbes [6]; nodulation is of utmost relevance in counteracting

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.