Abstract

The locus coeruleus (LC) is involved in several neural pathways responsible for some somatic and emotional processes, such as pain and depression; its activity is regulated by several receptors, such as opioid, alpha(2)-adrenergic, and 5-hydroxytryptamine (5-HT)(1A) receptors. The present study investigates the in vivo effects of venlafaxine, an antidepressant with analgesic properties, on locus coeruleus neurons, and its modulation by opioid, alpha(2)-adrenergic, and 5-HT(1A) receptors. The results show that acute administration of venlafaxine produced a dose-dependent, complete inhibition of LC activity. This inhibitory effect was not reversed by the opioid receptor antagonist naloxone, but subsequent administration of idazoxan, an alpha(2)-adrenoceptor antagonist, did reverse it. The preadministration of the 5-HT(1A) receptor agonist 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) (1 and 40 microg/kg) significantly enhanced the venlafaxine inhibitory effect, decreasing the ED(50) by 56 and 44%, respectively. A 14-day treatment with venlafaxine (40 mg/kg/day) induced a suppression of the firing activity of LC neurons. In these treated animals, venlafaxine produced an inhibitory effect similar to that in nontreated animals. This inhibitory effect was not reversed by naloxone, but it was reversed by idazoxan. In addition, the preadministration of 8-OH-DPAT (40 microg/kg) significantly enhanced the venlafaxine effect, decreasing the ED(50) by 60%. These results suggest that the effect of venlafaxine on LC neurons is modulated by alpha(2)-adrenergic and 5-HT(1A) receptors, and not by opioid receptors. These data could contribute to the further understanding of the antidepressant and analgesic mechanism of action of venlafaxine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.