Abstract

Neuropeptides are important regulatory factors that mediate key life processes, both in vertebrates and invertebrates. Many insect neuropeptides display pleiotropic activities, which means that they can influence multiple aspects of insect physiology. In the fruit fly, Drosophila melanogaster, Neuropeptide F (NPF) mediates diverse physiological processes, such as learning, stress responses, feeding and male courtship behavior. In locusts, only a truncated form of the predicted “full-length” NPF, the nonapeptide “trNPF”, has been isolated. This nonapeptide previously proved to be biologically active, since it was shown to influence food intake and weight increase, as well as oocyte growth in adult female desert locusts (Schistocerca gregaria [Forskål]). In the present study, we have further analyzed the effect of trNPF on female reproductive physiology in S. gregaria. We confirmed that daily trNPF injections in adult females elicit an increase of oocyte size. In addition, an RNAi-mediated knockdown of the Schgr-NPF precursor transcript in adult female locusts resulted in the opposite effect, i.e. significantly smaller oocytes. Moreover, we discovered that daily injections of trNPF in adult female S. gregaria, caused higher ecdysteroid titers in the ovaries and accelerated the appearance of ecdysteroid peaks in the hemolymph of these animals. The RNAi-based knockdown of the Schgr-NPF precursor transcript clearly resulted in reduction of both hemolymph and ovarian ecdysteroid concentrations, confirming the stimulatory effects of trNPF injections on adult female ecdysteroid levels. The observed results are discussed in relation to previous reports on NPF activities in locusts and other insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call