Abstract

A new fiber-optic catheter for in vivo blood-flow measurements has been developed. The catheter is designed to measure blood flow in both the forward (toward the catheter tip) and reverse (away from the catheter tip) flow directions. It consists of two multimode optical fibers with core diameter of 50 microns and cladding diameter of 125 microns. One fiber transmits the laser beam into blood and the other receives the backscattered light from the erythrocytes within the probe volume. In the flow experiment, it was found that the flow within the boundary layer is indeed laminar and, hence, the relationship between the Doppler shift frequencies and the flow velocities is linear, thereby making the linear calibration possible for predicting the free stream flow velocity. Plots of the maximum shift frequency (frequency at which the Doppler spectrum disappeared into the noise spectrum) against the flow velocities are found to be more linear in both the forward and reverse flow directions than that of the dominant shift frequency (frequency with the highest amplitude). These results were reaffirmed by the numerical flow simulation along the catheter side wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.