Abstract

In vivo drug dissolution in the gastrointestinal (GI) tract is largely unmeasured. The purpose of this clinical study was to evaluate the in vivo drug dissolution and systemic absorption of the BCS class IIa drug ibuprofen under fed and fasted conditions by direct sampling of stomach and small intestinal luminal content. Expanding current knowledge of drug dissolution in vivo will help to establish physiologically relevant in vitro models predictive of drug dissolution. A multilumen GI catheter was orally inserted into the GI tract of healthy human subjects. Subjects received a single oral dose of ibuprofen (800 mg tablet) with 250 mL of water under fasting and fed conditions. The GI catheter facilitated collection of GI fluid from the stomach, duodenum, and jejunum. Ibuprofen concentration in GI fluid supernatant and plasma was determined by LC-MS/MS. A total of 23 subjects completed the study, with 11 subjects returning for an additional study visit (a total of 34 completed study visits). The subjects were primarily white (61%) and male (65%) with an average age of 30 years. The subjects had a median [min, max] weight of 79 [52, 123] kg and body mass index of 25.7 [19.4, 37.7] kg/m2. Ibuprofen plasma levels were higher under fasted conditions and remained detectable for 28 h under both conditions. The AUC0-24 and Cmax were lower in fed subjects vs fasted subjects, and Tmax was delayed in fed subjects vs fasted subjects. Ibuprofen was detected immediately after ingestion in the stomach under fasting and fed conditions until 7 h after dosing. Higher levels of ibuprofen were detected in the small intestine soon after dosing in fasted subjects compared to fed. In contrast to plasma drug concentration, overall gastric concentrations remained higher under fed conditions due to increased gastric pH vs fasting condition. The gastric pH increased to near neutrality after feedingbefore decreasing to acidic levels after 7 h. Induction of the fed state reduced systemic levels but increased gastric levels of ibuprofen, which suggest that slow gastric emptying and transit dominate the effect for plasma drug concentration. The finding of high levels of ibuprofen in stomach and small intestine 7 h post dosing was unexpected. Future work is needed to better understand the role of various GI parameters, such as motility and gastric emptying, on systemic ibuprofen levels in order to improve in vitro predictive models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call