Abstract

The objective of this study was to use magnetic resonance imaging (MRI) to detect the time when and the location at which orally delivered mucoadhesive drugs are released. Drug delivery systems comprising tablets or capsules containing a mucoadhesive polymer were designed to deliver the polymer to the intestine in dry powder form. Dry Gd-DTPA [diethylenetriaminepentaacetic acid gadolinium(III) dihydrogen salt hydrate] powder was added to the mucoadhesive polymer, resulting in a susceptibility artifact that allows tracking of the application forms before their disintegration and that gives a strong positive signal on disintegration. Experiments were performed with rats using T(1)-weighted spin-echo imaging on a standard 1.5-T MRI system. The susceptibility artifact produced by the dry Gd-DTPA powder in tablets or capsules was clearly visible within the stomach of the rats and could be followed during movement towards the intestine. Upon disintegration, a strong positive signal was unambiguously observed. The time between ingestion and observation of a positive signal was significantly different for different application forms. Quantification of the remaining mucoadhesive polymer in the intestine 3 h after observed release showed significant differences in mucoadhesive effectiveness. MRI allows detection of the exact time of release of the mucoadhesive polymer in vivo, which is a prerequisite for a reliable quantitative comparison between different application forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call