Abstract

Ultrasonography was used as a noninvasive method for quantitative estimation of the subcutaneous and abdominal adipose tissue depots in dairy cattle. The prediction model was created and validated with a total of 29 German Holstein cows; 6 were in early lactation (≤100 d in milk [DIM]) and 16 were in advanced lactation (101 to 292 DIM). Seven cows were nonpregnant and nonlactating and had been off milk for 350 to 450 d. Transcutaneous assessment of the thickness of subcutaneous and retroperitoneal adipose tissue was done at 16 sites on the body surface of all cows. After completion of the ultrasonographic measurements, the cows were slaughtered and the adipose depots were separately weighed. A stepwise multivariate regression analysis of the ultrasonographic variables was performed to estimate the slaughter weights of the different fat depots. Slaughter weights of the fat depots ranged from 5.0 to 43.0 kg for subcutaneous adipose tissue (SCAT), from 13.7 to 98.8 kg for abdominal adipose tissue (AAT), from 3.4 to 30.3 kg for retroperitoneal adipose tissue (RPAT), from 5.2 to 39.6 kg for omental adipose tissue (OMAT), and from 4.0 to 35.8 kg for mesenteric adipose tissue (MAT). The relationship between calculated amount of fat and slaughter weight of fat had coefficients of determination () and root mean square errors (kg) of 0.88 and 3.4, respectively, for SCAT; 0.94 and 6.1, respectively, for AAT; 0.94 and 1.7, respectively, for RPAT; 0.83 and 3.2, respectively, for OMAT; and 0.95 and 1.6, respectively, for MAT. The accuracy of ultrasonographic measurement of the different fat depots appears sufficient for the quantitative assessment of internal and subcutaneous fat stores in cows. This method is noninvasive and therefore allows safe and repeated monitoring of the amount of stored fat in different adipose tissue depots of German Holsteins cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.