Abstract

RNA interference (RNAi) has considerable potential as a therapeutic strategy, but the development of efficient in vivo RNA delivery methods remains challenging. To this end, we designed and synthesized chemically modified interfering nanoparticles (iNOPs) composed of functionalized poly-l-lysine dendrimers modified with reducible spacers to facilitate release of small interfering RNAs (siRNAs) in vivo. We show that the novel siRNA–iNOP complexes mediate efficient gene-specific RNAi in cultured cells and in mice, where they display enhanced tissue-targeting capabilities. At a clinically feasible dose of 1 mg kg–1, apolipoprotein B (apoB) siRNA–iNOP complexes achieved ∼40–45% reduction of liver apoB mRNA and plasma apoB protein levels within 48 h of administration to mice, without apparent toxicity. Collectively, these findings demonstrate that siRNA delivery by the modified reducible iNOPs can provide a clinically significant and potentially tissue-specific new approach for RNAi therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.