Abstract

In this study Raman (RS) and Fourier Transform Infrared (FT-IR) spectroscopic techniques were exploited to study 11 retrieved liners made of remelted highly cross-linked polyethylene (HXLPE), with the intent to elucidate their in-vivo mechanical and chemical degradation. The retrievals had different follow-ups, ranging from a few months to 7 years of implantation time and belong to the first generation of highly cross-linked and remelted polyethylene clinically introduced in 1999, but still currently implanted. Raman assessments enabled to discriminate contributes of wear and creep on the total reduction of thickness in different locations of the cup. According to our results, although the most of the viscoelastic deformation occurred during the first year (bedding-in period), it progressed during the steady wear state up to 7 years with much lower but not negligible rate. Overall, the wear rate of this remelted HXLPE liner was low. Preliminary analysis on microtomed sections of the liners after in-vivo and in-vitro accelerated aging (ASTM F2003-02) enabled to obtain a phenomenological correlation between the oxidation index (OI) and the amount of orthorhombic phase fraction (αc), which can be easily non-destructively measured by RS. Profiles of αc obtained from different locations of the cups were used to judge the oxidative degradation of the 11 retrievals, considering also the ex-vivo time elapsed from the revision surgery to the spectroscopic experiments. Low but measurable level of oxidation was detected in all the short-term retrievals, while in the middle-term samples peaks of OI were observed in the subsurface (up to OI=4.5), presumably induced by the combined effect of mechanical stress, lipid absorption and prolonged ex-vivo shelf-aging in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.