Abstract

Genetically modified mouse models (GEMM) have been instrumental in assessing gene function, modeling human diseases, and serving as preclinical model to assess therapeutic avenues. However, their time-, labor- and cost-intensive nature limits their utility for systematic analysis of gene function. Recent advances in genome-editing technologies overcome those limitations and allow for the rapid generation of specific gene perturbations directly within specific mouse organs in a multiplexed and rapid manner. Here, we describe a CRISPR/Cas9-based method (Clustered Regularly Interspaced Short Palindromic Repeats) to generate thousands of gene knock-out clones within the epithelium of the skin and oral cavity of mice, and provide a protocol detailing the steps necessary to perform a directin vivoCRISPRscreen for tumor suppressor genes. This approach can be applied to other organs or other CRISPR/Cas9 technologies such as CRISPR-activation or CRISPR-inactivation to study the biological function of genes during tissue homeostasis or in various disease settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.