Abstract

Retronecine-labelled [3H]seneciphylline ([3H]SPH) and [3H]senecionine ([3H]SON) of high specific radioactivity (22 and 49 mCi/mmol, respectively) were prepared biosynthetically with seedlings of Senecio vulgaris L. using [2,3-3H]putrescine as precursor. [2,3-3H]Putrescine was synthesized by Gabriel synthesis of 1,4-diamino-2-butene from 1,4-dibromo-2-butene and catalytic hydrogenation of the product with tritium gas. Rats of both sexes were treated with the labelled pyrrolizidine alkaloids (PAs) (75-215 microCi SPH or 40-485 microCi SON/kg body wt.) and killed after 6 h or 4-5 days. SON-treated females excreted 83.4 +/- 0.2% of applied radioactivity in faeces and urine within 4 days whereas equally treated males excreted 90.9 +/- 3.2% in the same time. Excretion of 3H-activity from SPH-treated females was completed within 5 days (104.7 +/- 6.4%). Corresponding with these results, tissue levels were highest in SON-treated females. DNA and proteins were isolated from liver, lungs and kidneys and covalent binding of the alkaloids to DNA was determined. A Covalent Binding Index (CBI, mumol alkaloid bound per mol nucleotides/mmol alkaloid administered per kg body wt.) of 210 +/- 12 was found for the liver from SON-treated females whereas binding to liver DNA of males was lower by a factor of 4. The DNA damage determined six hours after treatment persisted during the following 4 days. Administration of [3H]SPH to female and male rats resulted in a CBI of 69 +/- 7 and 73/92, respectively, for the liver DNA. Furthermore we found binding of both alkaloids to DNA of lungs and kidneys in male and female rats. The in vivo formation of [3H]SON derived DNA adducts could be proved by HPLC analysis of hydrolyzed DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.