Abstract

Aim This study aimed to investigate whether in vivo corneal confocal microscopy (CCM) can detect the improvement of corneal nerve parameters following glycemic control in patients with type 2 diabetes in natural history. Methods Thirty-two patients with diabetes complicated by DPN and 12 age-matched control subjects underwent detailed clinical examination and were assessed per the Toronto Clinical Scoring Scale for DPN, nerve conduction studies, and IVCCM at baseline and after approximately one year from the first visit. Results At follow-up, 16 diabetic patients had improved glycemic control (group A, HbA1c < 7.0%, 7.78 ± 1.62% versus 6.52 ± 0.59%, P = 0.005), while the remainder continued to have elevated HbA1c levels (group B, HbA1c ≥ 7.0%, 8.55 ± 1.57% versus 8.79 ± 1.05%, P = 0.527). For patients in group A, corneal nerve fiber density (CNFD) (18.55 ± 5.25 n/mm2 versus 21.78 ± 6.13 n/mm2, P = 0.005) and corneal nerve fiber length (CNFL) (11.62 ± 2.89 mm/mm2 versus 13.04 ± 2.44 mm/mm2, P = 0.029) increased significantly compared to baseline. For patients in group B, sural sensory nerve conduction velocity (47.93 ± 7.20 m/s versus 44.67 ± 6.43 m/s, P = 0.024), CNFD (17.19 ± 5.31 n/mm2 versus 15.67 ± 4.16 n/mm2, P = 0.001), corneal nerve branch density (19.33 ± 12.82 n/mm2 versus 14.23 ± 6.56 n/mm2, P = 0.033), and CNFL (11.16 ± 2.57 mm/mm2 versus 9.90 ± 1.75 mm/mm2, P = 0.011) decreased significantly. Conclusions The results of this study suggest that morphological repair of corneal nerve fibers can be detected when glycemic control improves. In vivo CCM could be a sensitive method that can be applied in future longitudinal or interventional studies on DPN.

Highlights

  • Diabetic polyneuropathy (DPN) is one of the most common chronic complications of diabetes

  • A long-term follow-up study on type 2 diabetes reported that the rate of abnormal nerve conduction velocity (NCV) results was 8% at baseline, and it increased to 16% and 42% after 5 years and 10 years, respectively [4]

  • Toronto Clinical Scoring System (TCSS) was significantly lower in diabetic patients

Read more

Summary

Introduction

Diabetic polyneuropathy (DPN) is one of the most common chronic complications of diabetes. Over 50% of diabetic patients develop DPN as their disease course progresses [1]. Diabetic neuropathy leads to morbidity in diabetic patients in the form of painful neuropathy and foot ulceration with consequent lower limb amputation [2]. It accounts for reduced quality of life and imposes a significant economic burden on both individuals and society [3]. Prospective studies on diabetic neuropathy have revealed that neuropathy progresses gradually with time. A long-term follow-up study on type 2 diabetes reported that the rate of abnormal nerve conduction velocity (NCV) results was 8% at baseline, and it increased to 16% and 42% after 5 years and 10 years, respectively [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call