Abstract

We coated transcutaneous implants made of titanium alloy Ti6Al4V with copolymer dimethyl (2-methacryloyloxy-ethyl) phosphonate and 4-vinylpyridine and investigated the tissue reaction with respect to its biocompatible and antimicrobial properties in vivo. We distinguished between clinically observable superficial inflammations and histologically detectable deep infections. The vinylpyridine moieties were transferred into cationic pyridinium groups by reaction with hexyl bromide. Thus polymers with both antimicrobial capacity and good biocompatibility were obtained. In a short-term study, we implanted specially designed bare or coated implants in hairless but immunocompetent mice and analyzed the tissue reaction histologically. No difference was found between bare and coated implants in the initial healing phase of up to 14days; however, after 21days the scar tissue formation was higher in the bare implant group. The degree of epithelial downgrowth was comparable in both groups at any time point. In a long-term study of up to 168days, we analyzed resistance to infection. In the bare implant group, 7 of the 12 implantation sites became infected deep whereas in the coated implant group only two deep infections were observed. The other implantation sites showed only superficial signs of inflammation. These results generally accord with previous in-vitro studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.