Abstract

BackgroundAssessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. To date, totally non-invasive in vivo methods with this capability are still lacking. As an original technique, a cine arterial spin labeling (ASL) cardiovascular magnetic resonance approach is demonstrated to be able to produce dynamic MBF maps across the cardiac cycle in rats.MethodHigh-resolution MBF maps in left ventricular myocardium were computed from steady-state perfusion-dependent gradient-echo cine images produced by the cine-ASL sequence. Cyclic changes of MBF over the entire cardiac cycle in seven normal rats were analyzed quantitatively every 6ms at rest and during adenosine-induced stress.ResultsThe study showed a significant MBF increase from end-systole (ES) to end-diastole (ED) in both physiological states. Mean MBF over the cardiac cycle within the group was 5.5 ± 0.6 mL g-1 min-1 at rest (MBFMin = 4.7 ± 0.8 at ES and MBFMax = 6.5 ± 0.6 mL g-1 min-1 at ED, P = 0.0007). Mean MBF during adenosine-induced stress was 12.8 ± 0.7mL g-1 min-1 (MBFMin = 11.7±1.0 at ES and MBFMax = 14.2 ± 0.7 mL g-1 min-1 at ED, P = 0.0007). MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014). The dynamic analysis also showed a time shift of peak MBF within the cardiac cycle during stress.ConclusionThe cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed ASL approach. Dynamic MBF maps were obtained with high spatial and temporal resolution (6ms) demonstrating the feasibility of non-invasively mapping cyclic myocardial perfusion variation at rest and during adenosine stress. In a pathological context, detailed assessment of coronary responses to infused vasodilators may give valuable complementary information on microvascular functional defects in disease models.

Highlights

  • Assessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations

  • MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014)

  • The cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed arterial spin labeling (ASL) approach

Read more

Summary

Introduction

Assessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. The morphology and function of capillaries across myocardial wall during a cardiac cycle play a pivotal role on the mechanical control of blood perfusion to regional myocardium together with arteriolar and venular mechanics and responses [5]. Determination of the role of systolic extravascular compression on the pattern of blood flow in the microcirculation during the cardiac cycle has been limited to measurements made in those regions of the myocardium where direct observations of these microvessels is possible [6,7,8]. Quantitative assessment of myocardial perfusion and characterization of cyclic myocardial perfusion variation would help better understand the mechanisms underlying myocardial contractility and may give valuable complementary information on microvascular functional defects in nonischemic heart diseases

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.