Abstract

We present in-vivo study related to the use of our implantable RF telemetry system for pressure-volume (PV) cardiac monitoring in a animal subject. We implant a commercial MEMS PV sensor into the subject's heart left-ventricle (LV), while the telemetry system is implanted outside of the heart and connected to the sensor with a 7-microwires tether. The RF telemetry system is suitable for commercial application in medium sized subjects, its total volume of 2.475cm(3) and a weight of 4.0g. Our designed system is 58 % smaller in volume, 44 % in weight and has a 55 % reduction in sampling power over the last reported research in PV telemetry. In-vivo data was captured in both an acute and a freely moving setting over a 24 hour period. We experimentally demonstrated viability of the methodology that includes the surgical procedure and real-time monitoring of the in-vivo data in a freely moving subject. Further improvements in catheter design will improve the data quality and safety of the subject. This real-time implantable technology allows for researchers to quantify cardiac pathologies by extracting real-time pressure-volume loops, wirelessly from within freely moving subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.