Abstract

Multiple system atrophy (MSA) is a rare neurodegenerative disease, often presented with orthostatic hypotension (OH), which is a disabling symptom but has not been very explored. Here, we investigated MSA patients with OH by using positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) and 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) for in vivo evaluation of the glucose metabolism and dopaminergic function of the brain. Totally, 51 patients with MSA and 20 healthy controls (HC) who underwent 18F-FDG PET/CT were retrospectively enrolled, among which 24 patients also underwent 11C-CFT PET/CT. All patients were divided into MSA-OH(+) and MSA-OH(-) groups. Then, statistical parametric mapping (SPM) method was used to reveal the regional metabolic and dopaminergic characteristics of MSA-OH(+) compared with MSA-OH(-). Moreover, the metabolic networks of MSA-OH(+), MSA-OH(-) and HC groups were also constructed and analyzed based on graph theory to find possible network-level changes in MSA patients with OH. The SPM results showed significant hypometabolism in the pons and right cerebellar tonsil, as well as hypermetabolism in the left parahippocampal gyrus and left superior temporal gyrus in MSA-OH(+) compared with MSA-OH(-). A reduced 11C-CFT uptake in the left caudate was also shown in MSA-OH(+) compared with MSA-OH(-). In the network analysis, significantly reduced local efficiency and clustering coefficient were shown in MSA-OH(+) compared with HC, and decreased nodal centrality in the frontal gyrus was found in MSA-OH(+) compared with MSA-OH(-). In this study, the changes in glucose metabolism in the pons, right cerebellar tonsil, left parahippocampal gyrus and left superior temporal gyrus were found closely related to OH in MSA patients. And the decreased presynaptic dopaminergic function in the left caudate may contribute to OH in MSA. Taken together, this study provided in vivo pathophysiologic information on MSA with OH from neuroimaging approach, which is essential for a better understanding of MSA with OH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call