Abstract

We examined effects of acute unilateral enucleation on incorporation from blood of intravenously injected unsaturated [1-14C]arachidonic acid ([14C]AA) and [1-14C]docosahexaenoic acid ([14C]DHA), and of saturated [9,10-3H]palmitic acid ([3H]PA), into visual and nonvisual brain areas of awake adult Long-Evans hooded rats. Regional cerebral metabolic rate for glucose (rCMRglc) values also were assessed with 2-deoxy-D-[1-14C]glucose ([14C]DG). One day after unilateral enucleation, an awake rat was placed in a brightly lit visual stimulation box with black and white striped walls, and a radiolabeled fatty acid was infused for 5 min or [14C]DG was injected as a bolus. [14C]DG also was injected in a group of rats kept in the dark for 4 h. Fifteen minutes after starting an infusion of a radiolabeled fatty acid, or 45 min after injecting [14C]DG, the rat was killed and the brain was prepared for quantitative autoradiography. Incorporation coefficients k* of fatty acids, or rCMRglc values, were calculated in homologous brain regions contralateral and ipsilateral to enucleation. As compared with ipsilateral regions, rCMRglc was reduced significantly (by as much as -39%) in contralateral visual areas, including the superior colliculus, lateral geniculate body, and layers I, IV, and V of the primary (striate) and secondary (association, extrastriate) visual cortices. Enucleation did not affect incorporation of [3H]PA into contralateral visual regions, but reduced incorporation of [14C]AA and of [14C]DHA by -18.5 to -2.1%. Percent reductions were correlated with percent reductions in rCMRglc in most but not all regions. No effects were noted at any of nine non-visual structures that were examined. These results indicate that enucleation acutely reduces neuronal activity in contralateral visual areas of the awake rat and that the reductions are coupled to reduced incorporation of unsaturated fatty acids into sn-2 regions of phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Reduced fatty acid incorporation likely reflects reduced activity of phospholipases A2 and/or phospholipase C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.