Abstract

Cyclic adenosine monophosphate (cAMP) is a universal second messenger that mediates a myriad of cell functions across all kingdoms of life.The ability to monitor intracellular changes of cAMP concentration in living cells using FRET-based biosensors is proving to be of paramount importance to unraveling the sophisticated organization of cAMP signaling.Here we describe the deployment of the fruit fly Drosophila melanogaster, specifically the third instar larval stage, as an in vivo model to study the spatio-temporal dynamics of cAMP in neurons. The ubiquity of cAMP signaling and conservation of fundamental mechanisms across species ensures relevance to vertebrate neurons while providing a more structurally and ethically simple model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call