Abstract
Fabrication of a blood-repellent surface is essential for implantable or interventional medical devices to avoid thrombosis which can induce several serious complications. In this research, a novel micropatterned surface was fabricated via a facile and cost-effective method, and then, the in vitro and in vivo blood-repellent performances of the controllable superhydrophobic surface were systematically evaluated. First, a facile and cost-effective strategy was proposed to fabricate a controllable superhydrophobic surface on a medically pure titanium substrate using an ultraviolet laser process, ultrasonic acid treatment, and chemical modification. Second, the superhydrophobicity, durability, stability, and corrosion resistance of the superhydrophobic surface were confirmed with advanced testing techniques, which display a high contact angle, low adhesion to water and blood, and excellent resistant element precipitation. Third, the platelet-rich plasma and whole blood were applied to evaluate the hemocompatibility of the superhydrophobic surface by means of an in vitro experiment, and no blood cell activation or aggregation was observed on the superhydrophobic surface. Finally, hollow tubes with an inner superhydrophobic surface were implanted into the left carotid artery of rabbits for 2 weeks to verify the biocompatibility in vivo. The superhydrophobic surface could effectively eliminate blood cell adhesion and thrombosis. No obvious inflammation or inordinate proliferation was found by histological analysis. This research provides a facile and cost-effective strategy to prepare a blood-repellent surface, which may have promising applications in implanted biomedical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.