Abstract

Trough intravital functional optical coherence tomography (OCT) in mouse models, this study investigates physiological processes within the fallopian tube in vivo. The transport of oocytes and embryos through the oviduct (fallopian tube) is a fundamental reproductive processes of clinical importance. However, because mammalian fertilization and embryogenesis take place deep within the female body, these processes are hidden from direct observation. Therefore, much of what we know about the innerworkings of the female reproductive tract is extrapolated from in vitro and ex vivo experimental settings and does not necessarily represent the native state, limiting success in management of reproductive disorders. This study presents first in vivo volumetric dynamic imaging of oocytes and embryos as they are transported through the mouse oviduct. By implementation of new functional OCT methods, we established methods for tracking oviductal ciliary function and individual sperm movements. Supported by dynamic volumetric visualizations, the study reveals a variety of intriguing never-before-seen dynamic behaviors and suggest new regulatory mechanisms driving reproductive processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.