Abstract

Bioluminescence imaging (BLI) modalities are being developed to monitor islet transplant mass and function in vivo. The aim of this study was to use the BLI system to determine how the change in functional islet mass correlated to metabolic abnormalities during the course of alloimmune rejection in a murine transplant model. Islets obtained from a transgenic mouse strain (FVB/NJ-luc) that constitutively expressed firefly luciferase were transplanted to various implantation sites of syngeneic wild-type FVB/NJ or allogeneic Balb/C streptozotocin-induced diabetic recipients. In vivo graft luminescent signals were repeatedly measured after transplantation using the BLI system and related to blood glucose levels and graft site histologic findings. The BLI signals were detected in as few as 10 islets implanted in the renal subcapsular space, intrahepatic, intraabdominal, and subcutaneous locations. There was a linear relationship between the number of islets transplanted and luminescence intensity. In isografts, stable luminescence intensity signals occurred within 2 weeks of transplantation and remained consistent on a long-term basis (18 months) after transplantation. In allografts, after normoglycemia was achieved and stable luminescence intensity occurred, graft bioluminescent intensity progressively decreased several days before permanent recurrence of hyperglycemia as a result of histologically proven rejection ensued. Bioluminescence imaging is a sensitive method for tracking the fate of islets after transplantation and is a useful method to detect early loss of functional islet mass caused by host immune responses even before overt metabolic dysfunction is evident. Bioluminescence imaging holds promise for use in designing and testing interventions to prolong islet graft survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.