Abstract

Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme inhibition, causing phototoxic reactions, being scavengers of reactive oxygen species and free radicals, in addition to being able to initiate free radical reactions. Absorption, distribution and excretion strongly depend on the properties of the side chains. The pristine C(60) has a very long biological half-life, whereas the most water-soluble derivatives are eliminated from the exposed animals within weeks. A long biological half-life raises concern about bioaccumulation and long-term effects. In general, the acute oral, dermal and airway toxicity is low. However, few relevant experimental studies of repeated dose toxicity, reproductive toxicity and carcinogenic effect are available. The data suggest that direct DNA damaging effects are low, but formation of reactive oxygen species may cause inflammation and genetic damage. Apparently, it is dose-dependent whether a beneficial or an adverse effect occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.