Abstract

Primary hyperoxaluria type 1 (PH1) is a childhood-onset autosomal recessive disease, characterized by nephrocalcinosis, multiple recurrent urinary calcium oxalate stones, and a high risk of progressive kidney damage. PH1 is caused by inherent genetic defects of the alanine glyoxylate aminotransferase (AGXT) gene. The invivo repair of disease-causing genes was exceedingly inefficient before the invention of base editors which can efficiently introduce precisely targeted base alterations without double-strand DNA breaks. Adenine base editor (ABE) can precisely convert A·T to G·C with the assistance of specific guide RNA. Here, we demonstrated that systemic delivery of dual adeno-associated virus encoding a split-ABE8e could artificially repair 13% of the pathogenic allele in AgxtQ84X rats, a model of PH1, alleviating the disease phenotype. Specifically, ABE treatment partially restored the expression of alanine-glyoxylate-aminotransferase (AGT), reduced endogenous oxalate synthesis and alleviated calcium oxalate crystal deposition. Western blot and immunohistochemistry confirmed that ABE8e treatment restored AGT protein expression in hepatocytes. Moreover, the precise editing efficiency in the liver remained stable six months after treatment. Thus, our findings provided a prospect of invivo base editing as a personalized and precise medicine for PH1 by directly correcting the mutant Agxt gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call