Abstract

Phase pure hydroxyapatite (HA) and two silicate-substituted hydroxyapatites (0.8 and 1.5 wt% Si, or 2.6 and 4.9 wt% SiO4) were prepared by aqueous precipitation methods. The filter-cakes of HA and silicate-substituted hydroxyapatite (SiHA) compositions were processed into granules 1.0-2.0 mm in diameter and sintered at 1200 degrees C for 2 h. The sintered granules underwent full structural characterisation, prior to assessment in an ovine defect model by implantation for a period of 6 and 12 weeks. The results indicate that HA and SiHA implants were well accepted by the host tissue, with no evidence of inflammation. New bone formation was observed directly on the surfaces and in the spaces between the granular implants. Quantitative histomorphometry as determined by the percentage of bone ingrowth and bone coverage for both SiHA implant compositions was significantly greater than that for phase pure HA. These findings indicate that the in vivo bioactivity of hydroxyapatite was significantly improved by the incorporation of silicate ions into the HA structure, making SiHA ceramics attractive alternatives to conventional HA materials for use as bone graft substitute ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.