Abstract

Central corneal epithelial thinning associated with midperipheral epithelial thickening has been reported as the main factor contributing to the effectiveness of orthokeratology (ortho-k) in myopia control. Yet, the cellular mechanism governing the regional change in refractive power remains elusive. This study aimed to evaluate the correlation between the regional change in corneal epithelial thickness and cell density in ortho-k wearers. A new human prototype of a polarization-dependent optical coherence microscope was developed to enable noncontact and noninvasive in vivo imaging of corneal epithelial cells in ortho-k wearers with and without their ortho-k lens. The epithelial thickness and cell density were evaluated at the central and midperipheral corneal locations in four ortho-k wearers and four spectacle wearers serving as controls. Polarization-dependent optical coherence microscope achieved in vivo volumetric imaging of all epithelial cell types in ortho-k wearers with and without their lens over a field of view of 0.5 × 0.5 mm2 with an isotropic resolution of ~2.2 mm. The central epithelial thinning and midperipheral epithelial thickening were consistent across all ortho-k wearers. However, the inconsistency in their regional epithelial cell density highlighted a great variability in individual response to ortho-k treatment. There was no strong correlation between epithelial thickness and cell density, especially at the midperipheral cornea, in ortho-k participants. This study constitutes our first step toward uncovering the cellular mechanism underlying the effectiveness of ortho-k in myopia control. Future studies will focus on the longitudinal evaluation of epithelial cells before and during ortho-k treatment to identify factors governing individual response to ortho-k treatment and ultimately inform the dynamics of epithelial cells taking place during the ortho-k treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.