Abstract

Measurement of gastrointestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). This study aimed to set up and validate a fluorescence imaging technique to measure in vivo the intramucosal pH (pHim) of the intestine. The intestine was inserted into an optical chamber placed under a microscope. Animals were injected intravenously with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pHim by constructing a calibration curve. The pHim controls were performed with a pH microelectrode and were correlated with venous blood gas sampling. Results show that pHim is determined with an accuracy of +/- 0.07 pH units and a response time of 1 min. In conclusion pHim mapping of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call