Abstract

The mammalian aorta undergoes rapid remodeling during the perinatal period and more gradual remodeling during subsequent development, but the implications of this remodeling for arterial mechanics are poorly understood. In this study in vivo and in vitro techniques were used to determine the static and viscoelastic properties of the thoracic aortas of 119-day-gestation fetal sheep (full term = 145 days), 21-day-old lambs, and adult sheep at control distending pressures and after 70% increases or 30% decreases in pressure. In the weeks surrounding birth, aortic wall tissue became substantially stiffer (static elastic modulus in vitro increased by 28%, and pressure wave velocity in vivo increased by 61%) but less viscous (pressure wave attenuation in vivo decreased by 46%, and viscoelastic phase angle in vitro decreased by 15%), whereas the wall thickness-to-radius ratio was unchanged. By contrast, modest changes in tissue viscoelasticity from neonatal to adult life were accompanied by a halving of the wall thickness-to-radius ratio from 0.19 +/- 0.01 to 0.10 +/- 0.01. The relative thinning of the vessel wall, combined with a doubling of blood pressure after birth, resulted in a 265% increase in aortic wall tensile stress over the period of study. We concluded that rapid remodeling in the perinatal period primarily alters the viscoelastic properties of aortic wall tissues, whereas more gradual postnatal remodeling largely affects vessel geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call