Abstract

The effects of tetramethylthiuram disulfide (TMTDS) and dimethyldithiocarbamate (DMDTC) on hepatic microsomal drug metabolism were studied after in vivo administration to male rats (1 g/kg, po) and after in vitro addition of the compounds to control microsomal suspensions. Results were compared to the effects of the known inhibitor of drug metabolism, disulfiram (DS, tetraethylthiuram disulfide), its reduced metabolite diethyldithiocarbamate (DDTC), and a common metabolite of all four compounds, carbon disulfide. Twenty-four hours after administration of the disulfides (TMTDS and DS) impairment of microsomal aniline hydroxylase and carboxylesterase activities was observed, while cytochrome P-450 and ethylmorphine N-demethylase activity were unchanged. The reduced thiols (DMDTC and DDTC) caused significant decreases in microsomal cytochrome P-450 and impaired all three microsomal enzymes. In vitro addition of all four compounds to control microsomes at a final concentration of 1 m m impaired aniline hydroxylase and carboxylesterase activity. However, only in vitro addition of TMTDS and DS significantly decreased ethylmorphine N-demethylase activity. This effect may be due to the fact that TMTDS and DS bind to cytochrome P-450 producing a type I spectral change and may, therefore, compete with the type I compound, ethylmorphine, for binding sites on cytochrome P-450. Impairment of aniline hydroxylase activity is the most sensitive indicator of an inhibitory effect of all four compounds on microsomal drug metabolism; this action is not dependent on decreases in cytochrome P-450. In vivo impairment of ethylmorphine N-demethylation by DMDTC and DDTC is related to decreases in microsomal cytochrome P-450 produced by these compounds, which may be due, in part, to their decomposition to CS 2 in the gut. The data indicate that industrial or agricultural exposure to compounds such as TMTDS and DMDTC may impair hepatic metabolism, and thereby enhance pharmacological activity of drugs taken by exposed individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.