Abstract

A limited therapeutic arsenal is currently available against Candida infections that show high resistance to antifungal agents. For this reason, there is a great need to prioritize testing therapeutic agents for the treatment of candidiasis. The use of essential oils and their phytoconstituents has been emphasized as a new therapeutic approach. The cell surface hydrophobicity (CSH), polysaccharide content, antimicrobial activity of essential oil from Origanum vulgare L. (OVEO), and its two phenolic compounds carvacrol and thymol were evaluated in four different Candida spp. (Candida albicans and emerging non-albicans Candida (NAC) species, such as C. glabrata, C. tropicalis, and C. krusei). The results showed the differences between Candida species; for example, C. tropicalis revealed higher resistance than other strains to different natural molecule treatments. The ultrastructural variabilities in the biomembranes and cell walls of these Candida spp. might explain the different biological effects observed after OVEO, carvacrol and thymol treatments. Therefore, to study the biological effects of these natural compounds on Candida strains, the samples were observed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Moreover, the release of cellular materials and their "in vivo" antimicrobial activity on infected G. mellonella larvae were evaluated. The novelty of this study is the demonstration that exists a close correlation between both structural architecture of cell walls and biomembranes' organization with cell fungal responses to essential oils treatments. Overall, these results suggest practical limits to the predictability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.