Abstract

The zebrafish lens is well suited for studies of physiology and development due to its rapid formation in the embryo and genetic accessibility. Aquaporin 0 (AQP0), a lens-specific membrane protein, is required for lens clarity. Zebrafish have two copies of AQP0 (Aqp0a and b), whereas mammals have a single, multifunctional protein. Here we demonstrate a reliable knockdown/rescue system in zebrafish and use it to provide evidence for subfunctionalization of Aqp0a and b, as well as to show that calcium-mediated regulation of Aqp0a in zebrafish lenses is necessary for transparency. Coinjection of antisense oligonucleotides and DNA rescue constructs into zebrafish embryos, followed by evaluation of the developing fish for cataracts, was used to analyze the functions of Aqp0a and b. The water permeability and regulation characteristics of each rescue protein were tested in a Xenopus oocyte swelling assay. Both copies of AQP0 are necessary for lens clarity in the zebrafish, and neither is sufficient. Water permeability is necessary but also insufficient. Phosphorylation and regulation of Aqp0a are required for its function. In the zebrafish lens, the two closely related AQP0s have acquired distinct functions that are both necessary for lens development and clarity. Regulation of AQP0 water permeability, a well-studied phenomenon in vitro, may be physiologically relevant in the living lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call