Abstract
In this work, an ecofriendly approach for biogenic production of copper oxide nanoparticles (CuO-NPs) was proposed by utilizing the Bacopa monnieri leaf extract as a reducing and stabilizing agent. The synthesis of CuO-NPs was instantly confirmed by a shift in the color of the copper solution from blue to dark gray. The use of UV–visible spectroscopy revealed a strong narrow peak at 535 nm, confirming the existence of monoclinic-shaped nanoparticles. The average size of CuO-NPs was 34.4 nm, according to scanning electron microscopy and transmission electron microscopy studies. The pristine crystalline nature of CuO-NPs was confirmed by X-ray diffraction. The monoclinic form of CuO-NPs with a crystallite size of 22 nm was determined by the sharp narrow peaks corresponding to 273, 541, 698, 684, and 366 Bragg’s planes at different 2θ values. The presence of different reducing metabolites on the surface of CuO was shown by Fourier transform infrared analysis. The biological efficacy of CuO-NPs was tested against Helicobacter felis, Helicobacter suis, Helicobacter salomonis. and Helicobacter bizzozeronii. H. suis was the most susceptible strain with an inhibition zone of 15.84 ± 0.89 mm at 5 mg/mL of NPs, while the most tolerant strain was H. bizzozeronii with a 13.11 ± 0.83 mm of inhibition zone. In in vivo analgesic activity, CuO-NPs showed superior efficiency compared to controls. The maximum latency time observed was 7.14 ± 0.12 s at a dose level of 400 mg/kg after 90 min, followed by 5.21 ± 0.29 s at 400 mg/kg after 60 min, demonstrating 65 and 61% of analgesia, respectively. Diclofenac sodium was used as a standard with a latency time of 8.6 ± 0.23 s. The results observed in the rat paw edema assays showed a significant inhibitory activity of the plant-mediated CuO-NPs. The percentage inhibition of edema was 74% after 48 h for the group treated with CuO-NPs compared to the control group treated with diclofenac (100 mg/kg) with 24% edema inhibition. The solution of CuO-NPs produced 82% inhibition of edema after 21 days when compared with that of the standard drug diclofenac (73%). CuO-NPs vividly lowered glucose levels in STZ-induced diabetic mice, according to our findings. Blood glucose levels were reduced by about 33.66 and 32.19% in CuO-NP and (CuO-NP + insulin) groups of mice, respectively. From the abovementioned calculations, we can easily conclude that B. monnieri-synthesized CuO-NPs will be a potential antibacterial, anti-diabetic, and anti-inflammatory agent on in vivo and in vitro basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.