Abstract
A semi-LASER sequence was optimized for in vivo lactate detection in the prostate. The ethical committee waived the need for informed consent to measure 17 patients with high grade prostate cancer on a 3T system. A semi-LASER sequence was used with an echo time of 144 ms and optimized interpulse timing for a spectral citrate shape with high signal intensity. An LCModel basis set was developed for fitting choline, creatine, spermine, citrate, and lactate and was used to fit all spectra in tumor-containing voxels. For patients without detectable lactate, the minimal detectable lactate concentration was determined by adding in all spectra of tumor tissue a simulated lactate signal. The amplitude of the simulated lactate signal was iteratively decreased until its fit reached a Cramér Rao lower bound >20%, which was then set as the patient-specific detection limit. In none of the patients a convincing lactate signal was found. We estimated that on average the lactate levels in high grade prostate cancer are below 1.5 mM (range 0.9-3.5 mM), Interestingly, in one patient with extensive necrosis in the tumor biopsy samples (Gleason score 5+5), large lipid resonances were observed, which originated from the tumor. The minimal detectable lactate concentration of 1.5 mM in high grade prostate cancer indicates that if lactate is increased it remains at low concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.