Abstract

Fluorine-19 (19F) MRI with intravenously applied perfluorocarbons allows the in vivo monitoring of infiltrating immune cells as demonstrated in small animal models at high field. Here, we aimed to transfer this approach to a clinical scanner for detection of inflammatory processes in the heart after acute myocardial infarction (AMI) in a large animal model. Optimization of coil and sequence performance was carried out on phantoms and in vivo at a 3T Philips Achieva. AMI was induced in Munich mini pigs by 90-min occlusion of the left anterior descending artery. At day 3 after AMI, pigs received a body weight-adjusted intravenous dose of a perfluorooctyl bromide nanoemulsion followed by 1H/19F MRI at day 6 after AMI. A balanced steady-state free precession turbo gradient echo sequence using an ellipsoidal 19F/1H surface coil provided the best signal-to-noise ratio and a superior localization of 19F patterns in vivo. This approach allowed the reliable detection of 19F signals in the injured myocardium within less than 20min. The 19F signal magnitude correlated significantly with the functional impairment after AMI. This study demonstrates the feasibility of in vivo 19F MR inflammation imaging after AMI at 3T within a clinically acceptable acquisition time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.