Abstract

Introduction: B-cell acute lymphoblastic leukemia (B-ALL) patients that harbor rearrangements of the Mixed-lineage leukemia gene (MLLr; also known as KMT2Ar) have particularly dismal clinical outcomes. Although CAR T immunotherapies targeting CD19 have shown impressive responses treating MLLr B-ALL and other B cell malignancies, relapse, often with loss of relevant CD19 epitope, remains a major clinical concern. The mixed results of CD19 CAR T as a monotherapy underscores the need to pursue additional immunotherapy targets and novel therapeutic modalities for high-risk patients. Results and Methods: Data with existing CAR-T's suggest that increased target antigen density frequently correlates with increased tumor elimination. Therefore, we aimed to define the cell surface proteomic landscape of B-ALL to identify novel, MLLr-enriched candidates for targeted immunotherapy of this poor-prognosis subtype. As an initial screen, using N-glycoprotein capture and mass spectrometry, we quantified differentially abundant cell surface proteins in MLLr (n= 4) versus non-MLLr (n= 5) B-ALL cell lines (Figure 1). Label-free proteomics (n= 3 replicates) quantified >900 high-confidence membrane proteins (FDR=0.05). Principal component analysis identified unique cell surfaceome signatures between B-ALL subtypes, implying different surface landscapes associated with specific genetic alterations. The MLLr B-ALL "surfaceome" is notably characterized by increased expression of adhesion molecules not identified by RNA-sequencing alone. We focused on CD72 as a novel immunotherapy target given significant enrichment on MLLr B-ALL vs. other B-ALL subtypes, near equivalent antigen density to CD19, undetectable expression on HSPCs, T-cells, and other normal tissues, and reported widespread expression on other mature B-cell malignancies. Analysis of transcriptome and ChIP-seq data suggested increased CD72 expression in MLLr B-ALL is not regulated directly by the MLL-AF4 oncoprotein but instead a function of increased CD72 expression at pro-B-cell stage. Flow cytometry and immunohistochemistry on primary samples confirmed high expression of CD72 both in MLLr B-ALL as well as DLBCL. Recombinant CD72 ECD was panned against a fully in vitro nanobody yeast display library (McMahon et al., Nat Struct Mol Biol(2018)) resulting in isolation of multiple unique, highly-specific CD72 nanobody binders with KD's < 5nM. Nanobodies were incorporated into 2nd generation CAR constructs and transduced into normal donor CD8+ T-cells and assessed in vitro for tumor cell lysis, cytokine release, and exhaustion marker expression. Nanobody clone Nb.D4 outperformed others in lysis of B-ALL and DLBCL cells lines displaying a broad range of CD72 expression, had no activity versus CD72 negative cells, and showed similar efficacy to that found with a clinically-used CD19 CAR. To assess in vivo activity, CD72(Nb.D4) CAR-T's at 1:1 CD4:CD8 ratio were injected at an effector:tumor ratio of 5:1 into tumor-bearing NSG mice (luciferase-labeled SEM or MLLr PDX). In vivo results confirmed strong anti-tumor effect of CD72 nanobody CAR-T's, equivalent to clinical CD19 CAR, and significantly increased survival in mice (Figure 2). A CRISPR interference-generated antigen escape model of CD19 was also effectively eliminated by CD72 CAR-T's. We also introduce "antigen escape profiling", where cell surface proteomics of a CRISPRi CD72-knockdown model demonstrated extensive surfaceome rewiring with potential implications for leukemia cell trafficking and adhesion in the setting of acquired resistance. Given CD72's role as a BCR signaling inhibitory receptor, we are currently examining its influence on proximal B-cell receptor signaling and relationship to combination therapies affecting this pathway. Conclusions:By characterizing the surface proteomic landscape of B-ALL, we develop a resource for the research community and identify CD72 as a promising therapeutic target. We demonstrate that a novel, fully recombinant nanobody library can generate potent cellular therapies, which may be extended to other targets in the future. We anticipate that antigen escape profiling will prove broadly useful for anticipating mechanisms of resistance to novel immunotherapies. CD72 CAR-T's are a promising strategy across a range of B-cell malignancies, particularly those refractory to CD19 therapy. Disclosures Nix: UCSF: Patents & Royalties. Wiita:UCSF: Patents & Royalties; Indapta Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Protocol Intelligence: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call