Abstract

Spherical shaped plant viruses require a precise quantity, size, and shape of their coat protein subunits to assemble into virions of identical dimensions. The capsid of spherical plant virus particles typically consists of a precisely shaped protein cage, which in many cases is assembled from identical coat protein subunits. In addition to packaging the viral genome, such protein cages may have the capacity to load foreign compounds, either large molecules (e.g., polymers) or small molecules (e.g., anticancer chemotherapy drugs). Therefore, reassembled protein cages of suitable viruses can serve as carriers for cargo loading, which is what makes them an attractive platform for drug delivery. Here we describe methods to reassemble plant virus-like particles of hibiscus chlorotic ringspot virus (HCRSV) as nano-protein cages including the techniques to purify coat protein, prepare virus-like particles, and load them with foreign compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call