Abstract
Few new drugs are available against methicillin-resistant Staphylococcus aureus (MRSA), because MRSA has the ability to acquire resistance to most antibiotics, which consequently increases the cost of medication. The objective of this study is to evaluate the potentiation of sanguinarine (SN) with selected antibiotics (ampicillin [AC], oxacillin [OX], norfloxacin [NR], ciprofloxacin [CP], and vancomycin [VC]) against MRSA. Minimum inhibitory concentration was determined by using the broth microdilution method and the synergistic effect of AC, OX, NR, CP, and VC in combination with SN was examined by the checkerboard dilution test. The results of the checkerboard test suggested that all combinations exhibited some synergy, partial synergy, or additivity. None of the combinations showed an antagonism effect. The combination of SN plus CP exhibited maximum synergistic effect in 11/13 strains, followed by SN plus NR in 9/13 strains, and AC and OX in 7/13 strains each. The combination of SN with VC, however, mostly showed partial synergy in 11/13 strains. The time-kill assay showed that SN in combination with other antibiotics reduced the bacterial count by 10(2)-10(3) colony forming units after 4 h and to less than the lowest detectable limit after 24 h. Although in vivo synergy and clinical efficacy of SN cannot be predicted, it can be concluded that SN has the potential to restore the effectiveness of the selected antibiotics, and it can be considered in an alternative MRSA treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.