Abstract

In vitro human blood-brain barrier (BBB) models in combination with central nervous system-physiologically based pharmacokinetic (CNS-PBPK) modeling, hereafter referred to as the "BBB/PBPK" method, are expected to contribute to prediction of brain drug concentration profiles in humans. As part of our ongoing effort to develop a BBB/PBPK method, we tried to clarify the relationship of in vivo BBB permeability data to those in vitro obtained from a human immortalized cell-based tri-culture BBB model (hiBBB), which we have recently created. The hiBBB models were developed and functionally characterized as previously described. The in vitro BBB permeabilities (Pe, × 10-6cm/s) of seventeen compounds were determined by permeability assays, and in vivo BBB permeabilities (QECF) for eight drugs were estimated by CNS-PBPK modeling. The correlation of the Pe values with the QECF values was analyzed by linear regression analysis. The hiBBB models showed intercellular barrier properties and several BBB transporter functions, which were enough to provide a wide dynamic range of Pe values from 5.7 ± 0.7 (rhodamine 123) to 2580.4 ± 781.9 (rivastigmine). Furthermore, the in vitro Pe values of the eight drugs showed a good correlation (R2 = 0.96) with their in vivo QECF values estimated from human clinical data. We show that in vitro human BBB models provide clinically relevant BBB permeability that can be used as input for CNS-PBPK modeling. Therefore, our findings will encourage the development of a BBB/PBPK method as a promising approach for predicting brain drug concentration profiles in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call