Abstract

This paper investigated the long-termin vitrodegradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA) particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, andin vitrodegradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in thein vitrophysiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-monthin vitrodegradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

Highlights

  • Polymer-based composite scaffolds seem to have great potential in bone tissue-engineering

  • In order to study the aqueous degradation of PHBV and 10 wt% Nanosized hydroxyapatite (nHA)/PHBV scaffolds, selected samples fabricated from 10% (w/v) polymer solution were cut to the correct height (1.5 mm) and diameter (10 mm) with a sharp razor blade and weighed

  • The porosity and skeletal density of scaffolds prepared from 5% (w/v) PHBV solution were 88% and 0.1005 (g/cm3), respectively, whereas the porosity and skeletal density of scaffolds prepared from 10% (w/v) PHBV solution were 78% and 0.2244 (g/cm3), respectively

Read more

Summary

Introduction

Polymer-based composite scaffolds seem to have great potential in bone tissue-engineering. By selecting proper materials and fabrication technologies, good-quality scaffolds with consistent properties can be possible to fabricate [1]. There are some basic requirements that have been widely accepted for designing polymer scaffolds which can significantly affect the cell seeding and growth both in vitro and in vivo [2, 3]. One of the key requirements is that the ideal scaffolding materials should be easy to fabricate into a desired shape, and they should have a controlled porous architecture to allow for cell infiltration, attachment, growth, tissue regeneration, and vascularization. The scaffolds should be mechanically strong to maintain their structural integrity during culture, and the ultimate mechanical properties of polymers at large deformations are important in selecting particular polymers for biomedical application

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call