Abstract
The effects of growth factor loaded in nanoparticles mixed in fibrin constructs on chondrogenic differentiation were investigated by evaluating the specific cartilage extracellular matrix components in vitro and in vivo using a special cell source of bone marrow-derived stromal cells (BMSCs). The proliferation of cultured and transplanted BMSCs was found to be greater in fibrin constructs that contained TGF-beta3-loaded nanoparticles and TGF-beta3 alone than in constructs that contained unloaded nanoparticles or in fibrin hydrogel alone. Further, reverse transcriptase-polymerase chain reaction revealed that BMSCs cultured in the presence of TGF-beta3 in vitro and in vivo expressed high levels of aggrecan, cartilage oligomer matrix protein, SOX9, and type II collagen. However, a decrease in type I collagen expression was observed from 1 to 4 weeks in the presence of TGF-beta3. Moreover, histological and immunohistochemical assays revealed that large amounts of type II and proteoglycan were released from BMSCs embedded in fibrin constructs, while decreased levels of collagen type I were observed in BMSCs cultured in constructs that contained nanoparticles that were loaded with TGF-beta both in vitro and in vivo. These findings indicate that use of fibrin constructs that contained BMSCs and were provided with sustained levels of growth factors for a long period of time enabled the formation of hyaline cartilage tissue in vitro and in vivo. Overall, these results indicate that the system evaluated here may be useful for minimally invasive transplantation, BMSC differentiation, and engineering of composite tissue structures with multiple cellular phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.