Abstract

BackgroundFindings from animal and human studies have indicated that an oily calcium hydroxide suspension (OCHS) may improve early wound healing in the treatment of periodontitis. Calcium hydroxide as the main component is well known for its antimicrobial activity, however at present the effect of OCHS on the influence of periodontal wound healing/regeneration is still very limited. The purpose of this in vitro study was to investigate the effect of OCHS on periodontopathogenic bacteria as well as on the attachment and proliferation of osteoblasts and periodontal ligament fibroblasts.MethodsHuman alveolar osteoblasts (HAO) and periodontal ligament (PDL) fibroblasts were cultured on 3 concentrations of OCHS (2.5, 5 and 7.5 mg). Adhesion and proliferation were counted up to 48 h and mineralization was assayed after 1 and 2 weeks. Furthermore potential growth inhibitory activity on microorganisms associated with periodontal disease (e.g. Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans) as well as the influence of periodontopathogens and OCHS on the HAO and PDL fibroblasts counts were determined.ResultsMore than a 2-fold increase in adherent HAO cells was observed at 4 h following application of OCHS when compared to the control group (p = 0.007 for 2.5 mg). Proliferation of HAO cells at 48 h was stimulated by moderate concentrations (2.5 mg; 5 mg) of OCHS (each p < 0.001), whereas a high concentration (7.5 mg) of OCHS was inhibitory (p = 0.009). Mineralization was observed only for HAO cells treated with OCHS. OCHS did not exert any positive effect on attachment or proliferation of PDL fibroblasts. Although OCHS did not have an antibacterial effect, it did positively influence attachment and proliferation of HAO cells and PDL fibroblasts in the presence of periodontopathogens.ConclusionsThe present data suggests that OCHS promotes osteoblast attachment, proliferation and mineralization in a concentration-dependent manner and results are maintained in the presence of periodontal pathogens.

Highlights

  • Findings from animal and human studies have indicated that an oily calcium hydroxide suspension (OCHS) may improve early wound healing in the treatment of periodontitis

  • The aim of the present study was two-fold; 1) To determine a potential antimicrobial activity of OCHS including its components against bacterial species involved in pathogenesis of periodontitis and 2) to determine the effect on attachment and proliferation of host cells

  • Determination of antimicrobial efficacy of oily calcium hydroxide suspension The following species have been tested in the antimicrobial assays: F. nucleatum ATCC 25586, P. intermedia ATCC 25611, P. gingivalis (ATCC 33277 and three clinical isolates), T. forsythia ATCC 43037, A. actinomycetemcomitans (Y4 and three clinical isolates), C. rectus ATCC 33238, Eikenella corrodens ATCC 23834, E. nodatum ATCC 33099, P. micra ATCC 33270, and Capnocytophaga gingivalis ATCC 33624

Read more

Summary

Introduction

Findings from animal and human studies have indicated that an oily calcium hydroxide suspension (OCHS) may improve early wound healing in the treatment of periodontitis. Calcium hydroxide as the main component is well known for its antimicrobial activity, at present the effect of OCHS on the influence of periodontal wound healing/regeneration is still very limited. The purpose of this in vitro study was to investigate the effect of OCHS on periodontopathogenic bacteria as well as on the attachment and proliferation of osteoblasts and periodontal ligament fibroblasts. Organisms strongly implicated as etiologic agents of periodontitis include Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola [2] Other species such as Campylobacter rectus, Eubacterium nodatum, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Streptococcus constellatus support pathogenesis of disease [2,3]. Host response contributes to tissue destruction and bone resorption with the main mechanism of the ratio of RANKL (receptor-activator of nuclear-factor-κB ligand) to osteoprotegerin [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.